
For real strain rates, reached in the process of removing residual stresses by explosive 
working of such materials as,�9 example, St. 3 steel, the dynamic yield stress is 3-4 times 
greater than the static value. These data, based on experiments with high-speed stretching 
and compression of rods , are presented in [7]. 

In addition, the characteristic feature of the dynamic nature of deformation is included 
by introducing into the analysis the drift of the stresse d state of the substance toward the 
static yield stress. 

In conclusion, we thank Yu. I. Fadeenko for his assistance in this work and for discus- 
sion of the results. 
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RELAXATION OF SUBMICROSECOND PRESSURE PULSES IN A SOLID 

Yu. I. Meshcheryakov UDC 534.222 

Stress relaxation in dynamical problems of plasticity is described, from the standpoint 
of dislocation dynamics, by the Sokolovskii--Malvern--Duvall equation [I]: 

' Oa~j /Ot  - -  9 c ~ O ~ j / O t  = - -  a O e ~ / O t  ( 1 ) 

which takes into account the effect of velocity on the nature of the wave motion of the de- 
formation. The plastic strain rate tensor ~P. is written as the result of the simultaneous 

13 
gliding in opposite directions of postive and negative dislocations 

where the summation is over all the slip planes" +~) and -~(m) are the positive and nega- 
' ik ik 

tive dislocation density tensors. 

As a rule, the conditions of deformation at strain rates ~ < 103 ensure, on the average, 
equality of the positive and negative dislocations, which corresponds to a zero net Burgers 
vector of the dislocation structure. In the case of pulse or shock loading, however, these 
conditions may not be fulfilled. In accordance with the defi6ition of the dislocation den- 
sity tensor in continuum dislocation theory, the latter is written in terms of plastic dis- 
tortion gradients in the form aij = --eikIVkWlj- This means that in the presence of the large 
displacement gradients realized under high-speed loading the absolute values of the charge 
dislocation density may also be large. As shown in [2, 3], especially favorable conditions 
for the appearance of dislocation charges are realized in the contact loading zone, 

As is known, charge dislocations are sources of long-range internal stress fields in 

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, 
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crystals, which may excite collective motions of the dislocation structure. One type of col- 
lective motion was examined in [4] with reference to a dislocation wall. In the case of 
pulse ~ loading the interactibn of the stress field and the collective 0s~illations of the 
dislocation structure may lead to damping of the loading pulse. This damping may be the 
cause of additional stress relaxation not taken into account in Eq. (]). 

A comparison of the experimental data on stress relaxation associated with high-speed 
loading and the model represented by Eq. (I) indicates a considerable discrepancy between 
the stress relaxation rate and the dislocation density. It has been found, for example, 
that the initial dislocation density, required for the adequate description of the rate of 
attenuation of the elastic precursor, should be 2-3 orders higher than is observed in the 
crystals before loading [5], if in Eq. (1) we use the exponential stress deoendence of the 
dislocation velocity proposed by Gilman. The analysis of the ~amping of the elastic pre- 
cursor carried out in [6] showed that using the viscous charatter of the power dependence of 
dislocation velocity on stress gives realiStic values of the dislocstion density over the 
entire region of uniaxial shock loading, except for the contact zone. 

In experiments on the damping of the elastic precursor the material is usualiy loaded 
by means of high-velocity plate impact. Since very short (<0.1 psec) pressure pulses cannot 
be obtained with this method of loading, it is not possible to follow the behavior of the 
elastic precursor in the contact zone, and the precursor damping curve is extrapolated to 
the impact plane. At the same time, the latest experiments on loading with very short pres- 
sure pulses (30-70 nsec) initiated by lasers [7] or electron beams [8] indicate that in the 
contact zone the behavior of the compression wave is quite different from what it is in the 
far zone. It was found, in particular, that in the contact zone there is at first relaxa- 
tion of the entire wave up to a certain level, ~ollowed directly by the separation of an 
elastic precursor whose damping proceeds at asomewhat different rate. Thus stress relaxa- 
tion in the elastic precursor is realized from the level to which the entire wave has been 
able to relax before the elastic precursor was released, and the amplitude of the latter 
cannot be extrapolated ~o the impact plane. Thus, the damping of the stress wave is composed 
of a short wave-damping interval (~0.5"2 mm) in the contact zone and the subsequent slower 
damping of the elastic precursor. 

A qualitative description of the process of stress relaxation in shock waves from the 
standpoint of dislocation dynamics was given in [9], where it was shown that a shock wave 
moving through a crystal contains a charge dislocation surface. In its absence the crystal 
lattice behind the front would be subjected to very large compressive strains. Under cer- 
tain conditions the shear stresses acting in planes the normals to which do not coincide 
with the direction of wave propagation might exceed the theoretical strength of the solid. ~ 
If there is a moving dislocation surface at the shock front, then behind the front there 
will be stress relaxation to the hydrostatic compression level. 

As shown in [I0], longitudinal and shear waves, whose sources are dislocations on the 
Smith surface, propagate into the region behind the frQnt. These waves transmit the energy 
of the particles in the wave front into the region behind the front, creating rapidly fluc- 
tuating stresses that interact with thedislocation structure of th e crystal. The motion of 
dislocations in random stress fields is characterizedby a marked velocity distribution [11, 
12], which is indirectly confirmed by measurements of the velocity of the free surface of 
the target in shock experiments [13]. 

Thus, on the basis of the above, it is possible to construct the following qualitative 
picture of stress relaxation in the hi~h-speed loading contact zone:" the high charge dis- 
location densities generated in the wave front create rapidly fluctuating stress fields which 
interact with the collective oscillations of thedislocation structure, leading ultimately 
to the dissipation of the energy in the wave. As shown below, the velocity distribution of 
the dislocations is important in connection with this type of damping. 

For the quantitative description of the process of stress pulse relaxation in the con- 
tact zone, we will use the known equations of continuum dislocation theory relating the den- 
sity and charge dislocation flux with the stresses and displacements in the medium []4]: 

pO~hlat -- ~ik l~xi ;  (3) 

au~,/ax~ = Owi~/~t ._ j i~ ,  (4) 

where u is the particle velocity vector; Jik are the components of the dislocation flux 
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density tensor. A very general relation between Jik and the distortion tensor Wik, taking 
into account both the spatial and the time dispersion of the waves in a medium with disloca- 
tions, was established in [15] with the aid of the so-called dislocation conductivity tensor 

Oik~m: 

] ik (x , t )  = dx'  clt'o&.~ ( x - -  x ' ,  t - -  t') wl~ (x't').. 

The form of the tensor Oiklm depends on the length distribution of the dislocation segments 
and their orientation in space. An analysis made in [15] for the particular case of small 
dislocation oscillations showed that even in the simplest case it is not possible to repre- 
sent the dislocation conductivity tensor in the form corresponding to a medium with two re- 
normalized Lam~ constants, since the contribution of the motion of the dislocations to the 
different modes of o~ci!lation of the medium is not the same. In this connection it is more 
constructive to consider the stress field interaction process only in the slip planes of the 
dislocations, if it is borne in mind that, physica!ly, the dislocations move in precisely 
this way. In this case the contributions to the total dSslocation flux density tensor from 
the various slip systems can be summed, in the same way as for the ~otal positive and nega- 
tive dislocation density in expression (2). Differentiating (4) with respect ~o time and 
(3) with respect to the coordinate and assuming ~ik~m to be constant, we obtain 

~ ~ ~]I~ = O. (5) 
V~V~ a ~  ~ P~k~'~ ~ ' - ~  t + P - i -  ~t 

m = l  

It is more convenient to proceed using Fourier notation, on the assumption that all the quan- 
tities in Eq. (5) vary according to the law exp (ikx-- i~t). Then Eq, (5) becomes 

M 

In the last term the dislocation flu x density tensor~ vith allowance for the dislocation 
velocity distribution, can be written in terms of the velocity distribution function [16, 17]: 

,~m) ~ ~ ,(m~r (Z, t) dr. (6)  Ilk "~-~mli Tlbk Vm I ~  U ,  

H e r e ,  v(m) i s  a s c a l a r  r e p r e s e n t i n g  the  d i s t r i b u t i o n  f u n c t i o n  o f  the  d i s l o c a t i o n s  w i t h  r e -  
~Tb 

s p e c t  to  the  d i r e c t i o n  o f  the  t a n g e n t  to  the  d i s l o c a t i o n  l i n e  ~ a~d the  Burge r s  v e c t o r  b.  I n  
o r d e r  to  f i n d  i t ,  we can use  the  r e l a x a t i o n a l  fo rm o f  the  k i n e t i c  e q u a t i o n  

6dm) 015~) 8 ]~? 1(0) __ f$~) ( 7 ) 
"Tb . + e~kl~bkai~m~ -- , 

where mmn is the dislocation effective mass tensor; f ( o )  is the ~quiiibrium velocity distri- 
bution function. In order to simplify the further discussion and notation, we will every- 
where assume that Wik is the component of the distortion tensor corresponding to the slip 
plane, and Oik the corresponding component of the shear stress. Then the components of the 
distribution function should correspond to the direction of the tangent to the dislocation 
line ~i and the Burgers vector component bk, and the elastic compliance modulus is equal to 
~, the reciprocal of the shear modulus. In what follows the indices corresponding to the 
slip plane have been omitted. 

We also assume that the distribution function can be represented in the form 

where 

]c~ << IC0). 

Then f rom Eq. ( 7 ) ,  i n  F o u r i e r  componen t s ,  we o b t a i n  

i o/(0> 
- - : ,  

,,p 
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whence 
= Of(0) ! ~ i  -~ 

](1) i obm -1 ~ ( os - -  k v  - -  "-fT__ l " 

The dislocation flux density tensor (6) can, in its turn, be defined as 

] = b ~ v~ l )dv ,  

and the  d i s p e r s i o n  e q u a t i o n  f o r  the  m-th  s l i p  sys t em takes  the  form 

b 2 ~ 0/(o) ( ~)-i 
k ~ _ E ~ + -~ po ~ ~ -- kv -- dv =0. (8) 

For what follows it is necessary to specify the form of the equilibrium distribution 
function of the moving dislocations f(o). Along with the common features in the behavior of 
dislocations and a charged particle gas, in the case of dislocations there are important dif- 
ferences associated with the fact that the dislocations are in another medium. The disloca- 
tion kinetics are therefore determined not only by the interaction of the dislocations with 
each other but also by their interaction with the medium. The latter interaction leads, 
firstly, to the appearance of dislocation retardation forces due to phonon scattering, phonon 
viscosity, flutter effect, etc., and, secondly, to the velocity distribution associated with 
the scatter with respect to the height of the energy barriers in the path of the moving dis- 
locations and, moreover, thermal fluctuations. The equilibrium dislocation velocity distri- 
bution function is derived in the appendix. In the unidimensional case it has the following 
form: 

1 

= ~ oxp - ~.--~-(~ -~)~. (9) 

Here D2 = <AvAv>/Ai is the coefficient of diffusion in velocity space, which determines the 
velocity spread; B is the viscous damping constant of the dislocations. Then Eq. (8) takes 
the form 

-- ;--2] 

1- -  k~c~q-c; ~'03_oo c0--kv----  c~ 
Tp 

where we have introduced the following notation: c~ = ~/p is the shear wave velocity in the 
2 

crystal; Cp = ~o/k is the phase velocity of the oscillations: ~o = ~tb2n/m is the natural fre- 

quency of the collective oscillations of the dislocation structure; Vo = mD=/2B is the mean 
diffusion velocity of the dislocations. In what follows it is convenient to represent the 
integral in the form of a sum of two integrals, each of which is the average of the quanti- 
ties v ~(~ -- kv -- i/~p) -~ and v(~ -- kv -- i~p) -~ with respect to equilibrium distribution (9): 

o ~ 2c~ o 

where 

I L1 ~o v~exp  (v v) 

Tp 

ox- r ] 

i i t Y J 
- - - -  ~ d r .  

<Y3> = V~ k<'0 _~ ~ - k~--- %p 

After averaging we obtain 

~' v~ e-g- ~[ I ( ~ , <~3>=0. (11) 
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With allowance for (11), the dispersion equation takes the form 

~ , r - I  ~ ~ 3 _ - \ ~ - N j  ~-  O. i--~ + 2 i  + = 

We represent the frequency of the oscillations in the form of a sum of a real and an imagi- 
nary part: 

Then in the approximation ~o/k >>vo for the logarithmic decrement we obtain 

Here we have neglected the term (c~/c~)(l --  6 2 ) in view of the fact that c ~ / c ~  << 1. This is 

all the more justified at high values of the decrement when ~ § I. 

Let us consider the two extreme situations corresponding to the absence of viscous 
damping (B = O) and very high values of the constant (B = ~). In the first case the term in 

- = ~ o ~iI= O .  the exponent v/vo (ob/B)(2B/D=m) I/= § , whereas the term ~o/kvo = (~o/k)(~B/D=m; § 

As a result ~ § 0, i.e., there is no damping, as was to be expected. In the second case v/ 
v + 0 and ~o/kvo § ~, so that the damping is again equal to zero, the absence of damping in 
this case being due to the immobility of the dislocations. As the diffusion velocity vo of 
the dislocations increases, the decrement falls, which indicates that the dislocation velo- 
city spread leads to a decrease in the damping of the pulse. 

With the aid of the expressions obtained we can estimate the viscous damping constant B 
on the assumption that there is no multiplication of dislocations. The relation between B 
and the diffusion coefficient in velocity space can be found from the expression [11] 

D~ = (b21B~)~%~n. 

In this expression, in accordance with [II], D2v is to be understood as the velocity disper- 
sion of dislocations in viscous motion in the random stress field of the crystal. To obtain 
the coefficient of diffusion in velocity space D2 it is necessary to average the dispersion 
D2v with respect to the interaction correlation time. Obviously, in the case of dislocations, 
as the upper bound of the correlation time we can take the time at which the dislocation 
reaches the steady-state velocity, which can be determined from the equation of motion of 
the dislocation 

m y =  ~b - -  B v  (13)  

for known external stress and damping constant. From the equation there follows 

v = (ab/B)(l - -  e-Brim), 
whence  

t c o r =  m / B .  

Then t h e  d i f f u s i o n  c o e f f i c i e n t  D2 t a k e s  t h e  f o r m  

D~ = ( b V m B ) ~ 2 n .  

From t h i s  r e l a t i o n  and  t h e  d e f i n i t i o n  o f  vo i n t r o d u c e d  i n  e x p r e s s i o n  ( lO)  we c a n  d e f i n e  t h e  
damping constant as 

B = V 2 " ~ r n b ~ / V o  . (14) 

The mean diffusion velocity Vo can be determined with the aid of the expressions previously 
obtained from experiments on the damping of submicrosecond pressure pulses in the contact 
zone [7]. The data needed for the calculations are given in Table I. To these values, in 
accordance with definitiens (10), there corresponds a natural frequency of the collective 
oscillations of the dislocation structure ~o = 10-~~ -z To the length of the pressure 
pulse front Tfr = 10 -s sec there corresponds a wavelength of the fundamental harmonic I = 
3"]0 -4 cm or a value of the wave vector k = 2"I04 cm, whence the phase velocity Cp = (mo/ 
k) I/2 = 5-105 cm/sec. From expression (12) we can find the ratio cf/vo, if the logarithmic 
decrement 6 is known. The latter can be determined from the pressure pulse attenuation curves 
for aluminum [7]. The pulse amplitude decreases as o = go exp [--(mo6)t]. 
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TABLE l 

Dislocation density t0Scm-2 

Length of loading pulse front t O - S  s e c  

Value of Burgers vector (aluminum) 2,86.i0 - s  c m  

Effective mass of dislocation t,7.10 - 1 6  

Shear modulus 25,6 GPa 

Mass density of material 2,7 g/cm 3 

To the attenuation curve of the pulse with initial amplitude 0.15 GPa in [7] there cor- 
responds the value 6 = 7-10 -4 . Then, in accordance with (12), Cp/Vo = 3.6, whence the mean 
diffusion velocity of the dislocations vo = ].43"105 cm/sec. Substituting this value in 
expression (14), we obtain B = 2.10 -5 P, which is in good agreement with the published data 
for aluminum []8]. The estimates show that the mean diffusion velocity of the dislocations 
in a dynamic compression pulse may be considerable, up to half as much as the velocity of 
the transverse oscillations. 

In the dynamic compression wave the dislocations may have a velocity both less than and 
greater than the phase velocity of the oscillations. It is known that in an ensemble of 
particles distributed according to a law of type (9) the number of particles with a velocity 
less than the given velocity is greater than the number of particles with a velocity greater 
than the given velocity. Therefore the number of dislocations entrained by the wave exceeds 
the number of dislocations transferring momentum to the wave. As a result we get damping 
of the wave, which has been called Landau damping. 

Thus, we have shown that the damping of s ubmicrosecond pressure pulses in the hi~h-speed 
loading contact zone has a collective character similar to that of plasma oscillations. 

In conclusion, the author wishes to thank V. I. Vladimirov for useful discussions. 

APPENDIX 

To find the quasiequilibrium distribution function we use the kinetic equation for a 
single-particle velocity distribution function with interaction operator in the Fokker--Planck 

form []6] : 

of dive, (v])  + div,, ( v ] ) - -  o 1 0 2 _ _  - -  ~ (D~/)  -6  ~. ov---~" (D~I) . . .  
dt 

where D] and D2 are the coefficients of dynamic friction and diffusion in velocity space 
respectively. In developed form the translational part of the equation includes the term 

f3v/Zv; this depends on the derivative of the acceleration with respect to velocity, which 
can be determined from the equation of motion of the dislocation (13). 

Neglecting, in the equilibrium case, the forces of polarization and fluctuation damping 
as compared with the viscous forces, we obtain the equation 

s 2 o/{ ob B~ ) 2B 
Ov --'~" -- ~ \D~ra D2m _ nt- ~ / = O, 

whence, with allowance for normalization, we finally arrive at 

t 2B \~7 e x p [ - -  2B {t., 
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ENERGY LOSS BY PLASTIC DEFORMATION IN RADIAL COMPRESSION 

OF A CYLINDRICAL SHELL 
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INTRODUCTION 

During radial compression of a cylindrical liner at a velocity ~I0 3 m/sec, its motion 
differs from that computed by the equations of ideal fluid hydrodynamics. Agreement can be 
achieved within the limits of measurement error between experimental data and computation if 
the energy loss by deformation is taken into account [1]. As in this paper, the behavior of 
a liner fabricated from a homogeneous and isotropic material is considered in [I]. Its 
length is assumed constant and so large that edge effects can be neglected, and consider- 
ation limited to a ring of unit width. In such a formulation the problem of shell wall de- 
formation is equivalent to their uniaxial compression. 

The equation of radial axisymmetric motion of a thin liner subjected to external pres- 
sure p(t) has the form [1] 

p h ~  = N / R  - -  p, ( ~ )  

where N = ~h is the circumferential membrane force, ~ is the stress in the liner material, h 
'is the shell wall thickness, W = (Ro -- R) is their displacement, R is the radius of the middle 
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